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Abstract

This paper extends the modified residue calculus technique to problems which’
previously have only been solved by the generalized scattering matrix technique
in whole or part. In particular, the trifurcated waveguide solution is given.

Introduction

It is well known that the solution of a
bifurcated waveguitk canbe obtained either by
the Wiener-Hopf method or the residue calculus
technique.l Pace and Mittra2 originally used
these known solutions in conjunction with the
generalized scattering matrix technique to
arrive at the solution of such composite
problems as the E or H ~lane step. Later,
Van Blaricum and Mittra solved these same
problems with the modified residue calculus
technique using the idea of shifting known
zeroes of the mesomorphic function being con-
structed. Since the shift was known asympto-
tically the convergence was enhanced greatly
over standard techniques. Recently, Royer
and Mittra4 examined a problem where the asymp-
totic shift of the zeroes could not be found.
They then used the infinite form of the Lagram
gian interpolating polynomial. The coeffi-
cients of the expansion could then be found
asymptotically, restoring the enhanced conver-
gence of the solution.

This paper studies a canonical problem of
a bifurcated waveguide with infinitely many
known modes incident from all guides. The
solution of this problem can be expressed ad-
vantageously using the infinite form of the
Lagrangian interpolating polynomial. This
solution can be used to solve composite prob-
lems previously solved using the generalized
scattering matrix technique. As an example,
the E-plane trifurcated waveguide junction is
solved. One interesting result is the asymp-
totic form of mode coefficients whose field
must satisfy more than one edge condition.
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Consider the TM solution of the bifurcated
waveguide in figure 1. The fields are deriv-
able from $ = Hy and the fields in each region
are given by
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where a superscript (o) indicates an incident
field. Upon matching the fields at the junc-
tion and performing the usual procedures one
can arrive at two infinite equations for the
mode coefficient, An. For n = o we find

immediately that
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The solution to the problem is found by con-
sidering the following integrals
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where T(u) has simple poles at y
n=l,2, . . .
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are equal to zero. Then using the properties

of T(u) and comparing with the original equa-
tions for An we find the following properties
of T(u).
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where m=l,2, . . . . From these properties

we can construct T(u) as follows:
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gE (~ ) is determined from the edge con-
(b)

dition; and where KQ, gn , ~(c) and g~~{

are related to the Incident f?elds via ‘ -
(iv) . This represents the complete solution
to the canonical problem.

The trifurcated waveguide can be solved by
recessing the junction as shown in figure 2.
This is only an artificial recession used as
an aid in formulation of the problem.
Actually, in computations A ~0. From the

figure we recognize two distinct junctions.
This leads us to construct two mesomorphic
functions. Let us identify a function Tl(u)
with the junction at Z = O.
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similarly, let us iden;jyAa function T2(~)
with the junction at .
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where (1)Fl(o), F2(OJ), ~ and K(2) are known
and are similar to F((0) and K“ of the canon-
ical problem with only a chang~ of geometrical
factors for each junction necessary. TEM mode
incidence has been assumed. Extension to high-
er order mode incidence is straightforward.
The functions T (u) and T2(u) are just special

Acases of the ca onical problem. The first
function can be constructed by thinking of the
unknown scattered modes from Z = A as the in-
cident field of the junction. This corre-
sponds to g(c)= g(b)s O in the canonical SOIU
ti on.
that n~g$y

n say cf~) = g(l), recognizing
represents anperturbation to

T1(u) due ?O the coupling between the junc-

tions. The second function i
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Two infinite mat?ix equations can
b~ derived by insisting that the two functions
give consistent results for the modal coeffi-
cients in the coupling region. This results
in the equations
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This choice is important since it allows the
satisfaction of the edge condition at both
edges. This allows truncation of the equations

for enhanced convergence.

Numerical Results

Data was computed for the geometries in
Pace and Mittra5 and agreement was found in
all cases (with exception of a slight error in
Pace) . No sensitivity to the ratio of the
number of perturbation coefficients carried
was found. Table 1 illustrates the conver-
gence of the TEM current reflection coeffi-
cient of the region b_ for the parameters:
kb = 1.27046,-kobL g 0.41417,-and
k~b: = 0.20033.

TABLE 1

N— M Arg R

1 0.3230 131.1°
2 0.3244 132.0°
3 0.3243 132.0°
4 0.3241 131.8°
6 0.3243 131.9°
8 0.3243 131.9”

where N is the number of perturbation coeffi-
cients associated with each function (exclu-
ding the asymptotic coefficients). Pace gives
a value of R = 0.324 exp(j 132.5) for this
case. It should be noted that an independent
check of the programming can be obtained by
switching the dimensions, b and b2. This re-
sult also converged to the %bove reflection
coefficient.

Conclusions

This technique allows the solution of prob-
lems which previously have been solved using
the generalized scattering matrix technique.
The convergence is enhanced over the general-
ized scattering matrix technique as a result
of the solution explicitly satisfying the
edge condition at both edges.

This technique has also been extended to
junctions involving more than three waveguides
as well as junctions with various dielectric
loading. The convergence of the numerical re-
sults are comparable to those shown for the
trifurcated waveguide.

Currently, the results are being extended
to open region type problems such as obtaining
the coupling between two parallel plate wave-
guides above a homogeneous half space.
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FIG. 2 TRIFURCATED WAVEGUIDE
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